

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

 $Siddharth\ Nagar,\ Narayanavanam\ Road-517583$

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Geotechnical Engineering(20CE0114)

Course & Branch: B.Tech & CE

Year & Sem: II & II Regulation: R20

UNIT –I INTRODUCTION, PERMEABILITY & EFFECTIVE STRESS ANALYSIS

1		Define weathering and explain the process of soil formation by weathering in details.	[L2][CO1]	[12M]
2	a)	Classify various types of soil structures occur in nature with neat sketch. Explain clay mineralogy with neat sketch.	[L2][CO1] [L2][CO1]	[6M]
3	a)	Using three phase diagram of soil, develop an expression for Void ratio, water content, specific gravity and degree of saturation.	[L3][CO1]	[6M]
		The moist unit weight of soil sample is 19.2 kN/m³ and has water content of 9.8%. The specific gravity of soil particles is 2.69. Determine dry unit weight, void ratio, porosity and degree of saturation.	[L3][CO1]	[6M]
4	a)	Write short notes on Index Properties of soils.	[L1][CO1]	[4M]
		Explain in detail the laboratory method for particle size distribution of coarse grained soils by dry sieve analysis.	[L2][CO1]	[8M]
5		Explain in detail the Indian Standard classification System and list out group symbols in detail.	[L2][CO1]	[12M]
6	a)	Define Liquid limit, Plastic limit, Shrinkage limit and Plasticity index.	[L1][CO1]	[6M]
		A soil has a liquid limit of 45%, plastic limit of 20% and flow index of 50%. Determine its toughness index. If the natural water content is 25%, determine its consistency index.	[L3][CO1]	[6M]
7		Define permeability. Explain various factors affecting permeability.	[L2][CO1]	[12M]
8		Determine the average coefficient of permeability in the horizontal and vertical direction for a deposit consisting of three layers of thickness 5 m, 1m, and 2.5 m and having the coefficient of permeability of 3×10^{-2} mm/sec, 3×10^{-5} mm/sec and 4×10^{-2} mm/sec respectively.	[L3][CO1]	[12M]
9		Explain the coefficient of permeability in laboratory by constant head method with neat sketch.	[L2][CO1]	[12M]
10	a)	Explain Quick sand condition.	[L2][CO1]	[6M]
	b)	Define flow net and various applications of flow net.	[L1][CO1]	[6M]

UNIT –II COMPACTION AND CONSOLIDATION

1	a)	Differentiate between compaction and consolidation.	[L2][CO2]	[6M]
	b)	Differentiate between Standard proctor test and Modified proctor test.	[L2][CO2]	[6M]
2		of compaction on properties of soils.		[12M]
3		For constructing an embankment, the soil is transported from a Borrow area using a truck which can carry 6 m ³ of soil at a time. With the following details, determine the number of truckloads of soil required to obtain 100 m ³ of compacted earth fill and the volume of borrow pit.	[L3][CO2]	[12M]
		Property Borrow area Truck Field (Loose) (Compacted)		
		Bulk Unit Weight (kN/m³) 16.6 11.5 18.2		
		Water Content (%) 14 8 6		
4		Explain the procedure of standard proctor's test conducted in the laboratory.	[L2][CO2]	[12M]
5		atan optimum water content of 15%. Find the air voids and degree of saturation G=2.67. What would be the corresponding value of dry density on the zero air voidsat optimum moisture content.	[L3][CO2]	[6M]
	b)	An earth embankment is compacted at a water content 18%.to a bulk density of	[L3][CO2]	[6M]
		19.2 kN/m ³ . If the specific gravity of the sand is 2.7 find the void ratio and the degree of saturation of compacted embankment.		
6			[L1][CO2]	[12M]
7	a)	State the assumptions made in Terzaghi's theory of one-dimensional consolidation.	[L2][CO2]	[6M]
	b)	A layer of soft clay is 6 m thick and lies under a newly constructed building. The weight of sand overlying the clay layer produces a pressure of 2.6 kg/cm ² and the new construction increases the pressure by 1.0 kg/cm ² . If the compression index is 0.5. Compute the settlement. Water content is 40% and specific gravity of grains is 2.65.	[L3][CO2]	[6M]
8	a)	Define Coefficient of compressibility, Coefficient of Volume Change and Compression index.	[L2][CO2]	[6M]
	b)		[L3][CO2]	[6M]
9		Explain the procedure of consolidation test with neat sketch.	[L2][CO2]	[12M]
10		In a consolidation test the following results have been obtained. When the load was changed from 50 kN/m ² to 100 kN/m ² , the void ratio changed from 0.70 to 0.65. Determine compression index, coefficient of volume change and coefficient of consolidation in mm ² /sec.	[L3][CO2]	[12M]

UNIT –III STRESS DISTRIBUTION IN SOILS AND SHEAR STRENGTH OF SOILS

1		Develop an expression for the vertical stress at a point due to a point load, using	[L2][CO3]	[12M]
2		Boussinesq's theory. Explain Newmaark's influence chart with neat sketch.	[L2][CO3]	[6M]
	-	A water tank is supported by a ring foundation having outer diameter of 10 m and inner diameter of 7.5 m. The ring foundation transmits uniform load intensity of	[L3][CO3]	[6M]
		160 kN/m ² . Compute the vertical stress induced at depth of 4 m, below the centre		
3		of ring foundation. What do you understand by 'Pressure bulb'? Illustrate with sketches.	[L1][CO3]	[6M]
		A concentrated load of 2000 kN acts vertically at the ground surface. Determine	[L3][CO3]	[6M]
		the vertical stress at a point P which is 6m directly below the load. Also calculate the vertical stress at a point R which is at a depth of 6m but at a horizontal distance		
		of 5m from the axis of the load.		
4		Explain vertical stress under line load, strip load, circular load and rectangular area with neat sketch.	[L2][CO3]	[6M]
	b)	A circular ring footing for an overhead water tank carries a load of 1000 kN whose	[L3][CO3]	[6M]
		outer diameter is 3 m and inner diameter is 1.5 m. Determine the induced stress at a depth of 3 m from surface below the centre of the loaded area.		
5	a)	Explain the concept of 'Westergaards theory' in soils.	[L2][CO3]	[6M]
		Determine the vertical stress at a point P which is 3m below and at a radial distance of 3m from the vertical load 100kN. Use westergaard's solution.	[L3][CO3]	[6M]
6		E	[L1][CO4]	[6M]
	b)	Explain the Mohr-Coulomb strength theory.	[L2][CO4]	[6M]
7	_		[L1][CO4]	[6M]
0	b)		[L2][CO4]	[6M]
8		The results for triaxial tests conducted on three samples of a soil are given below. Obtain the shear strength parameters of the soil.	[L3][C04]	[12M]
		Cell pressure (kN/m²) 100 200 450		
		Deviator stress (kN/m^2) 375 575 973		
9		Describe the vane shear test with a neat sketch.	[L2][CO4]	[12M]
10	a)	Explain types of soils based on total strength.	[L2][CO4]	[6M]
	b)		[L3][CO4]	[6M]
		an unconfined compression test. The failure plane makes an angle of 55° with thehorizontal. Calculate the cohesion and angle of internal friction of the soil.		

UNIT –IV EARTH SLOPE STABILITY

1	a)	Define earth slope.	[L1][CO5]	[6M]
	b)	Explain factor of safety with respect to shear strength, cohesion and friction.	[L2][CO5]	[6M]
2	a)	What are the factors causing the slope failures?	[L1][CO5]	[6M]
	b)	Explain different types of slope failures with neat sketches.	[L2][CO5]	[6M]
3		Derive the expression for stability analysis of infinite slope of cohesive soils.	[L2][CO5]	[12M]
4		Derive the expression for stability analysis of infinite slope of cohesion less soils	[L2][CO5]	[12M]
5	a)	Explain Taylor's stability number.	[L2][CO5]	[6M]
	b)	A vertical cut is made is made in a clay deposit (c=30 kN/m ² , Φ = 0 ⁰ , γ =16 kN/m ²).	[L3][CO5]	[6M]
		Find the maximum height which can be temporarily supported. Take Sn=0.261.		
6		With the help of a neat sketch explain in detail about friction circle method.	[L2][CO5]	[12M]
7		A canal is to be excavated through a soil with $c = 15 \text{ kN/m}^2$, $\phi = 20^\circ$, $e = 0.9$ and $G = 2.67$. The side slope is 1 in 1. The depth of the canal is 6 m. determine the factor of safety with respect to cohesion when the canal runs full. What will be the factor of safety if the canal is rapidly emptied.		[12M]
8		Analyze the slope, if it is made of clay having $c^1 = 30 \text{ kN/m}^2$, $\varphi' = 20^0$, $e = 0.65$ and $G = 2.67$ and under the following conditions: (i) When the soil is dry (ii) When water seeps parallel to the surface of the slope (iii) When the slope is submerged slope angle $= 25^0$	[L3][CO5]	[12M]
9		Give the step by step procedure of analyzing stability of a finite slope using Swedish circle method.	[L3[CO5]	[12M]
10		With the help of a neat sketch show various forces considered for the analysis of a finite slope using Bishop's simplified method. Mention the equation for factor of Safety given by this method.		[12M]

UNIT -V SOIL EXPLORATION

1	a)	What are the different stages in sub soil exploration?	[L1][CO6]	[6M]
	b)	Explain various uses of site investigations.	[L2][CO6]	[6M]
2		Describe with a neat sketch how will you carry out the wash boring method of soil exploration.	[L2][CO6]	[12M]
3	a)	Discuss various open excavation methods for conducting soil exploration.	[L2][CO6]	[6M]
	b)	Sketch scraper bucket sample and explain how an undisturbed soil sample is extracted using it.	[L2][CO6]	[6M]
4	a)	How boring operations are carried out using rotary auger boring and percussion drilling?	[L1][CO6]	[6M]
	b)	Describe the construct of a split spoon sampler. Explain how undisturbed soil sample is extracted using it.	[L2][CO6]	[6M]
5	a)	Explain various types of soil samples.	[L2][CO6]	[6M]
	b)	List out various design features affecting the sample disturbance.	[L1][CO6]	[6M]
6		Give a detailed account on how Standard Penetration Test is conducted. What are the relevant corrections applied to SPT number?	[L2][CO6]	[12M]
7	a)	A SPT was conducted in fine sand below the water table and a value of 25 isobtained for N. What is the corrected value of N.	[L3][CO6]	[6M]
	b)	A SPT was conducted in a dense sand deposit at a depth of 22m and a value	[L3][CO6]	[6M]
		of 48 was observed for N. The density of the sand was 15 kN/m ² . What		
		is the value of Ncorrected for over burden pressure?		
8		Explain in detail how cone penetration test is conducted with neat sketch.	[L2][CO6]	[12M]
9	a)	Describe in detail execution of soil exploration program.	[L1][CO6]	[6M]
	b)	Explain various salient features of a soil exploration report	[L2][CO6]	[6M]
10		Explain in detail how plate load Test is conducted with neat sketch.	[L2][CO6]	[12M]

Prepared by: Mrs. K.ASHALATHA Asst Professor/CE